

COURSE TITLE : EMBEDDED SYSTEMS
COURSE CODE : 5041
COURSE CATEGORY : A
PERIODS/WEEK : 4
PERIODS/SEMESTER : 52/5
CREDITS : 4

TIME SCHEDULE

MODULE	TOPICS	PERIODS
1	AVR Microcontroller Architecture.	12
2	Assembly Language Programming.	14
3	AVR Programming Using Embedded C.	14
4	Embedded Systems.	12
TOTAL		52

Course General Outcome :

Module	GO	On completion of the study of this course the students will be able:
1	1	To understand AVR architecture.
2	2	To understand basics of AVR programming.
3	3	To understand AVR programming using C.
	4	To understand AVR timers and interrupts.
4	5	To understand the architecture of embedded systems and embedded OS.
	6	To know about advanced development boards.

GO - General Outcome

On the completion of the study the student will be able:

MODULE I AVR MICROCONTROLLER ARCHITECTURE

1.1.0 To understand AVR architecture

- 1.1.1 To describe about AVR family.
- 1.1.2 To list the features of AVR family.

- 1.1.3 To compare various members of the AVR family.
- 1.1.4 To compare the AVR with microcontroller offered by other manufactures.
- 1.1.5 To explain the block diagram of AVR ATmega32 microcontroller.
- 1.1.6 To explain the General purpose registers of ATmega32 microcontroller.
- 1.1.7 To explain the data memory of ATmega32 microcontroller.
- 1.1.8 To explain I/O memory (SFRs).
- 1.1.9 To describe Internal data SRAM of ATmega 32 microcontroller.
- 1.1.10 To compare SRAM and EEPROM in ATmega32 chips.
- 1.1.11 To illustrate ATmega32 status register.
- 1.1.12 To explain different addressing modes of ATmega 32 microcontroller.

MODULE II ASSEMBLY LANGUAGE PROGRAMMING

2.1.0 To understand the basics of AVR programming.

- 2.1.1 To explain the structure of Assembly Language Program.
- 2.1.2 To describe AVR Microcontroller Data Formats and Assembler Directives
- 2.1.3 To list the steps to create an AVR Assembly Language Program
- 2.1.4 To explain the Data Transfer, Arithmetic and Logic Instructions
- 2.1.5 To explain the rotate and shift instructions
- 2.1.6 To explain the Branch Instructions and Looping
- 2.1.7 To explain the Call Instructions and Stack
- 2.1.8 To describe AVR Time Delay and Instruction Pipeline
- 2.1.9 To explain Delay Calculation for the AVR
- 2.1.10 To describe I/O Port Programming in AVR
- 2.1.11 To write Simple Assembly Language Programs
- 2.1.12 To explain Macros
- 2.1.13 To compare Macros and Subroutines

MODULE III AVR PROGRAMMING USING EMBEDDED C

3.1.0 To understand AVR Programming in C.

- 3.1.1 To describe data types and time delays in C.
- 3.1.2 To describe I/O programming in C.
- 3.1.3 To explain logic operations in C.
- 3.1.4 To describe data conversion programs in C.
- 3.1.5 To explain data serialization in C.
- 3.1.6 To describe memory allocation in C.

3.2.0 To understand AVR timers and interrupts.

- 3.2.1 To explain programming timers 0, 1, and 2
- 3.2.2 To describe AVR interrupts
- 3.2.3 To explain the programming of timer interrupts
- 3.2.4 To explain programming external hardware interrupts
- 3.2.5 To state interrupt priority in the AVR microcontroller
- 3.2.6 To explain about serial Communication- I²C and SPI
- 3.2.7 To describe ATmega32 connection to RS232

MODULE IV EMBEDDED SYSTEMS

4.1.0 To understand the architecture of embedded systems and embedded OS.

- 4.1.1 To define an embedded system
- 4.1.2 To explain the concept of embedded systems
- 4.1.3 To list the characteristic features of an embedded system
- 4.1.4 To explain the architecture of an embedded system
- 4.1.5 To list the application areas of embedded system
- 4.1.6 To explain the specialities of embedded system
- 4.1.7 To list the types of embedded operating system
- 4.1.8 To describe various activities of an embedded OS such as task, task scheduling, context switching, mutual exclusions and inter task communications
- 4.1.9 To describe about memory management and timer services
- 4.1.10 To explain the general architecture of an embedded operating system
- 4.1.11 To state the role of kernel in embedded OS
- 4.1.12 To list the different categories of embedded OS and give examples for each

4.2.0 To know about advanced development boards.

- 4.2.1 To describe the concept of arduino development board
- 4.2.2 To describe the concept of raspberry pie development board

CONTENTS

MODULE I AVR microcontroller architecture

AVR family - features of AVR family - comparison of AVR family members - comparison with other microcontrollers - Block diagram of ATmega32 microcontroller - general purpose registers - data memory - I/O memory (SFRs) - internal data SRAM - comparison of SRAM with EEPROM in ATmega32 - status register - addressing modes of ATmega 32.

MODULE II Assembly language programming

Structure of assembly language program - data formats - assembler directives - AVR assembly language programming - data transfer - arithmetic and logic instructions - shift and rotate instructions - branch instructions and looping - call instructions and stack - time delay and instruction pipeline - delay calculation - I/O port programming in AVR - simple assembly language programs - macros - comparison with subroutines.

MODULE III AVR programming using embedded C

Data types and time delays in C - I/O programming - logic operations - data conversion programs - data serialization - memory allocation - programming of timers 0 - timer 1 - timer2- AVR interrupts - programming of timer interrupts - programming external hardware interrupts - interrupt priority in AVR microcontroller - serial communication- I²C and SPI - connection to RS232.

MODULE IV Embedded systems

Embedded system - concept - characteristic features - architecture - application areas - specialities - embedded operating system - types - activities of an embedded OS like task, task scheduling, context switching, mutual exclusions and inter task communications - memory management and timer services - general architecture of OS - kernal - categories of embedded OS - examples - concept of arduino and raspberry pie development boards.

Text Book

1. The AVR Microcontroller and Embedded Systems using assembly and C - Muhammad Ali Mazidi, Sarmad Naimi and Sepehr Naimi - Pearson Education.
2. Embedded / Real Time Systems Concept, Design and Programming The ultimate reference - Dr. K V K Prasad (Dreamtech).